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Motivation

• MST rapidly growing its contributions to tokamak physics with initial 
focus on disruption-related topics

• Contribute, e.g., to understanding runaway generation and suppression

• Apply resonant magnetic perturbations (RMP) with non-standard 
configuration (applied thru narrow cut in conducting shell)

• Trigger reproducible disruptions in non-standard manner (other than 
use of massive gas injection)



Outline

• MST and operation as a tokamak

• RMP suppression of runaway electrons (RE) in sustained plasmas

– Application of RMP with poloidal periodicities m = 1 and m = 3 

– NIMROD simulations of MST tokamak plasmas with RMP

• Generation of disruptions and high-energy, short-lived electrons

• Summary and future work



MST and tokamak operation



• MST operated as RFP for most of 
its life, recently added tokamak 
plasmas to its repertoire

• Thick symmetric Al shell acts as 
a single turn toroidal field  
winding

– Lower inductance allows Bt
manipulation on a short time-
scale

• Ro = 1.5 m, a = 0.5 m

Madison Symmetric Torus



• Well controlled Bt waveform

• Ip waveform not as well 
controlled

• Bt (a) < 0.15 T

• Ip = 40 – 60 kA

• q(a) = 2 – 3

• ne < 0.5 – 0.6 x 1019 m-3

• Te < 120 eV

MST tokamak waveforms



RMP suppression of REs in sustained plasmas



• REs observed for ne <  0.1x1019 m-3

• Diagnostic: x-ray emission 
measured with fast-time-response 
detector (20 ns FWHM pulse), E > 
3 keV

Runaway electrons observed at low density

A.M. DuBois et al., RSI, 86, 073512 (2015)



• REs suppressed for ne > 0.3x1019 m-3

• Previous contribution to ITPA 
study : electric field needed for RE 
generation is almost two orders of 
magnitude than the critical field 
for runaway generation

• Manuscript in preparation: S. 
Munaretto et al., PoP

Runaway suppressed for increased density
..



• q-profiles reconstructed w/  MSTFIT

• Using edge magnetic diagnostics, 
and constraints on core Te.

• q(0) < 1 , q(a) ~ 2.2

• Poloidal harmonics m = 1, m = 2, 
and m = 3 resonant within the 
plasma

• Focus of this talk: RMP with m=3 
and m=1.

m = 3 and m = 1 RMP applied have resonances in plasma



• MST has error field correction system 
which can be used to apply resonant 
magnetic perturbations (RMPs)

• RMP-drive coils (green) are adjusted 
to provide a prescribed poloidal 
harmonic at sensors (white)
– Broad toroidal spectrum

– This talk: m=1 and m=3

RMPs with various poloidal harmonics can be applied

m=1 
RMP

m=1 
RMP



• Dataset having low densities, large 
runaway

– Emission observed from t = 15-25 ms

– X-ray detectors with fast-response for E 
> 3 keV

– Array of x-ray detectors with slower 
response  (1.2 ms FWHM) used, E > 10 
keV

• X-rays generated near plasma core

• Data verified to ensure measured x rays 
not due to target emission

Bremsstrahlung from RE measured with multiple x-ray detectors

E > 3 keV

E > 10 keV



• m =3 RMP applied from 15 - 25 ms

– 200 G, Br(a)/B(a) ~ 14 %

– Each n has amplitude of about 4 G

• X rays > 10 keV absent after 2 ms

• Increased edge emission indicating 
loss of high energy electrons

• Increased suppression as RMP 
amplitude increased (next slide)

RE suppressed with application of m=3 RMP

E > 3 keV

E > 10 keV



• RMP amplitude scan performed 
for m = 3 perturbation

Most RE suppressed with m=3 RMP > 150 G
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No RE suppression observed with m=1 RMP



High Em

• Nonlinear computations solve resistive-
MHD without RE effects.
• Low-b conditions modeled with p = 0.
• S = 105 ; Pm = 1

• q(a) ~ 2.2 for these simulations

• Magnetic fluctuation energy shows 
sawtoothing with period similar to MST

NIMROD employed to simulate MST tokamak plasmas

No RMP applied

Low Em



• RMP vacuum field imposed on fitted 
equilibrium as the initial condition

• Applied perturbation amplitude based 
on data

Chaotic edge region with m = 3 RMP but not with m = 1 RMP, consistent with data

•Flux surfaces intact with m = 1 perturbation
•Edge flux surfaces highly stochastic with 
m = 3 perturbation

m=1 RMP
(200 G) m=3 RMP

(200 G)



• Data shows RE flux reduces 
with m = 3 RMP amplitude

• Low amplitude RMP case 
shows  (3,3), (3,2), (8,5), (5,3), 
and (4,2) island chains

• With larger RMP amplitude the 
island chains overlap yielding 
highly stochastic region around 
core

Increased stochasticity with larger m = 3 RMP might explain observed reduction of 
RE flux

50 G, m=3 RMP 200 G, m=3 RMP



Generation of disruptions and 
short-lived high-energy electrons



• Well controlled Bt ramp-down

• Leads to current quench

• Ip not actively controlled

• Reproducible

Disruptions generated by toroidal field ramp-down



• Density measured with 11 chord interferometer
• Density profile relaxes with sawtooth-like oscillations 

(t = 20 – 35 ms)
• Density profile flattens after Bt rampdown starts 

before eventual collapse

Central density and profile collapse preceding the current quench



• Te measured with 21 chord TS diagnostic
– 25 kHz, averaged over repeatable discharges
– Core average is over 3 central channels  (r/a = -0.02 to 

0.05)
– Edge average is over 2 edge channels (r/a = 0.65, 0.67)

• Core average Te drops from 60 eV to 25 eV at Ip max
• Edge Te remains fairly constant

Core temperature drops and profile flattens preceding current quench



• Disruption produced earlier in time

• Toroidal mode data computed from 
toroidal array of poloidal field sensors

• Sudden growth of n=1 mode to ~ 40% 
of the equilibrium poloidal field

• High-energy (>3keV), short-lived 
electrons are observed during the 
current quench

• Non-classical energization during 
magnetic reconnection observed in 
MST RFP plasmas [A.M. DuBois et 
al., PRL (2017)]

n=1 amplitude becomes larger prior to current quench



• X-rays with E > 3 keV observed in short bursts 
with fast-time-repsonse detector

• Higher count rate at lower (pre-Bt-
rampdown) densities

Larger x-ray emission observed at low densities
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Summary

• m = 3 RMP with large enough amplitude suppresses RE; NIMROD 
computations show increased stochasticity in the edge for such RMP 
amplitudes

• No suppression is achieved with m =1 RMP; NIMROD computations 
indicate intact flux surfaces at edge

• Recently, work has begun to diagnose disruptions caused by ramping 
down of Bt

• Current quench is preceded by characteristic temperature and density 
collapse

• Short-lived, high-energy electrons with pre-termination density 
dependence observed during current quench



Open questions, and future disruption-related work

• What causes the slow rise in Ip as Bt ramps down?

• What causes initial “modest” increase in MHD activity?

• What causes the sudden MHD spike to very large amplitude?

• What are the roles of MHD activity in thermal quench, electron 
transport?

• Improving Ip waveform control with new Bp programmable power 
supply

• Applying massive gas injection, shattered pellets



Thank you!



Non-classical energization during magnetic reconnection 
observed in MST RFP plasmas

A.M. DuBois et al., PRL, 118, 075001 (2017)
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The 20 ns response time enables dynamics of energetic electron 
generation and losses during reconnection events to be uncovered

• High time resolution soft x-ray detector

– Avalanche photodiode

– 20 ns Gaussian shaping amp

– 500 MHz digitization

– 14 bit sampling resolution

– 3 – 25 keV optimal sensitivity

A.M. DuBois et al, RSI 86, 073512 (2015) Time (ns)
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• Fe55 source (E = 5.89 keV) used for calibration
– V → E scaling factor
– Detector energy resolution

• Photon pulses fit with characteristic pulse



More FXR details

• R2 is calculated between photon pulse and 
characteristic pulse

• FWHM calculated from spline fit to photon pulse
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R2 = 0.981Fit with Gaussian to calculate 
scaling factor to convert 
voltage to energy

C
o

u
n

ts

Energy (keV)

𝐸 = 42.64 𝑘𝑒𝑉/𝑉 × 𝑣𝑜𝑙𝑡
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𝜎𝑥 = 0.77 𝑛𝑠
𝜎𝑦 = 0.01



Other x-ray detectors on MST

• 16 CdZnTe eV Products HXR detectors:
– 2 keV energy resolution
– 10 – 150 keV optimal sensitivity
– 1200 ns shaping time
– 60 MHz digitization rate

• Planned upgrades:
– 240 MHz digitizer system
– Improving take data scripts
– Faster Gaussian shaping chips



Early Bt rampdown shows similar plasma termination



q(a)>> 1 at termination, faster Ip quench


